Driving Innovation in Data Analytics Adoption for Auditing in Tanzania's Banking Sector

Authors

  • Thomas Kwilasa The Institute of Finance Management, P.O Box 3918, 5 Shaaban Robert Street 11101 Dar es salaam
  • Daniel Ntabagi Koloseni The Institute of Finance Management, P.O Box 3918, 5 Shaaban Robert Street 11101 Dar es salaam

DOI:

https://doi.org/10.21632/

Keywords:

Data Analytics, Auditing, Organisational factors, Innovative Behaviour

Abstract

This study explores the factors affecting Data Analytics (DA) adoption in Tanzanian commercial banks' audit functions by expanding the Technology Acceptance Model (TAM) with Organisational Factors (OF) and Innovative Behaviour (IB). Using a quantitative approach, data were gathered from 193 internal auditors and analysed with SmartPLS through Partial Least Squares Structural Equation Modelling (PLS-SEM). The study found that perceived Usefulness, innovative behaviour, leadership support, Organisational culture, and technological infrastructure significantly influence DA adoption. Surprisingly, financial resources and regulatory compliance negatively affect adoption. Contrary to traditional TAM expectations, perceived ease of use and employee training do not have a significant impact. Practical implications indicate that banks should promote innovation, invest in infrastructure, and align regulatory frameworks with digital transformation objectives. Policymakers should create supportive environments, while practitioners must incorporate analytics into auditing workflows. Future research should examine longitudinal trends and cross-country comparisons, and provide qualitative insights into financial and regulatory challenges.

Author Biographies

Thomas Kwilasa, The Institute of Finance Management, P.O Box 3918, 5 Shaaban Robert Street 11101 Dar es salaam

Department of Banking and Financial Services,  The Institute of Finance Management 

Daniel Ntabagi Koloseni, The Institute of Finance Management, P.O Box 3918, 5 Shaaban Robert Street 11101 Dar es salaam

Department of Information Technology, The Institute of Finance Management

References

Abdelwahed, Ahmed S, Abu-Musa, A. A., Badawy, H. A., & Moubarak, H. (2025). Unleashing the Beast: The Impact of Big Data and Data Analytics on the Auditing Profession—Evidence from a Developing Country. Future Business Journal, 11(1), 12.

Abdelwahed, Ahmed S, Abu-Musa, A. A., Moubarak, H., & Badawy, H. A. (2024). The use of big data and analytics in external auditing: does audit firm size matter? Evidence from a developing country. South African Journal of Accounting Research, 38(2), 113–145.

Abdelwahed, Ahmed Saad, Abu-Musa, A. A. E. S., Badawy, H. A. E. S., & Moubarak, H. (2025). Investigating the impact of adopting big data and data analytics on enhancing audit quality. Journal of Financial Reporting and Accounting, 23(2), 472–495.

Al-Ateeq, B., Sawan, N., Al-Hajaya, K., Altarawneh, M., & Al-Makhadmeh, A. (2022). Big data analytics in auditing and the consequences for audit quality: A study using the technology acceptance model (TAM). Corporate Governance and Organizational Behavior Review, 6(1), 64–78.

Al-Okaily, M., Alqudah, H. M., Al-Qudah, A. A., & Alkhwaldi, A. F. (2024). Examining the Critical Factors of Computer-Assisted audit tools and Techniques Adoption in the post-COVID-19 period: Internal Auditors' Perspective. VINE Journal of Information and Knowledge Management Systems, 54(5), 1062–1091.

Ali, O., Murray, P. A., Muhammed, S., Dwivedi, Y. K., & Rashiti, S. (2022). Evaluating Organisational Level IT Innovation Adoption Factors among Global Firms. Journal of Innovation & Knowledge, 7(3), 100213. https://doi.org/10.1016/j.jik.2022.100213

Alles, M. G. (2015). Drivers of the Use and Facilitators and Obstacles of the Evolution of Big Data by the Audit Profession. Accounting Horizons, 29(2), 439–449.

Appelbaum, D., Kogan, A., & Vasarhelyi, M. A. (2017). Big Data and Analytics in the Modern Audit Engagement: Research Needs. Auditing: A Journal of Practice & Theory, 36(4), 1–27.

Awuah, B., Onumah, J. M., & Duho, K. C. T. (2022). Determinants of adoption of computer‐assisted audit tools and techniques among internal audit units in Ghana. The Electronic Journal of Information Systems in Developing Countries, 88(2), e12203.

Barney, J., Wright, M., & Ketchen, D. J. (2001). The resource-based view of the firm: Ten years after 1991. Journal of Management, 27(6), 625–641. https://doi.org/10.1177/014920630102700601

Behl, A., Chavan, M., Jain, K., Sharma, I., Pereira, V. E., & Zhang, J. Z. (2022). The role of organisational culture and voluntariness in the adoption of artificial intelligence for disaster relief operations. International Journal of Manpower, 43(2), 569–586.

Bin-Nashwan, S. A., Li, J. Z., Jiang, H., Bajary, A. R., & Ma'aji, M. M. (2025). Does AI adoption redefine financial reporting accuracy, auditing efficiency, and information asymmetry? An integrated model of TOE-TAM-RDT and big data governance. Computers in Human Behavior Reports, 17, 100572.

Bos-Nehles, A., Bondarouk, T., & Nijenhuis, K. (2017). Innovative work behaviour in knowledge-intensive public sector organisations: the case of supervisors in the Netherlands fire services. International Journal of Human Resource Management, 28(2), 379–398. https://doi.org/10.1080/09585192.2016.1244894

Ceki, B., & Moloi, T. (2025). Technology Adoption Framework for Supreme Audit Institutions Within the Hybrid TAM and TOE Model. Journal of Risk and Financial Management, 18(8), 409.

Chipeta, C., & Muthinja, M. M. (2018). Financial innovations and bank performance in Kenya: Evidence from branchless banking models. South African Journal of Economic and Management Sciences, 21(1). https://doi.org/10.4102/sajems.v21i1.1681

Christiansen, V., Haddara, M., & Langseth, M. (2022). Factors affecting cloud ERP adoption decisions in organisations. Procedia Computer Science, 196, 255–262.

Clohessy, T., & Acton, T. (2019). Investigating the influence of organisational factors on blockchain adoption: An innovation theory perspective. Industrial Management & Data Systems, 119(7), 1457–1491.

Cochran, W. (1977). Sampling Techniques (3rd Ed). John Wiley & Sons.

Creswell, J. W., Creswell, J. D., Creswell, J. W., & Creswell, J. D. (2018). Research design: qualitative, quantitative, and mixed methods approaches (Fifth edit). SAGE.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (Third edition). SAGE Publications, Incorporated.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203

Hasnan, S., Hakim, A. A., Ab Rahaman, A. F., Farzana Zulkifli, F. N., Mohd Hazimi, N. H., & Muhammad Shaifuddin, A. R. (2023). Determinants of Big Data Analytics (BDA) Adoption among Small and Medium Enterprises (SMEs). Accounting and Finance Research, 12(4), 54. https://doi.org/10.5430/afr.v12n4p54

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.

Ifinedo, P. (2011). Internet/E‐business Technologies Acceptance in Canada's SMEs: An Exploratory Investigation. Internet Research, 21(3), 255–281. https://doi.org/10.1108/10662241111139309

Ilori, O., Nwosu, N. T., & Naiho, H. N. N. (2024). Advanced data analytics in internal audits: A conceptual framework for comprehensive risk assessment and fraud detection. Finance & Accounting Research Journal, 6(6), 931–952.

Islam, S., & Stafford, T. (2022). Factors associated with the adoption of data analytics by internal audit function. Managerial Auditing Journal, 37(2), 193–223.

Jeon, S.-C. (2014). A Study on Behavioral Intention and Application of Information Systems Audit technology Using the Technology Acceptance Model (TAM). Journal of Advanced Navigation Technology, 18(6), 609–618.

Kamdjoug, J. R. K., Sando, H. D., Kala, J. R., Teutio, A. O. N., Tiwari, S., & Wamba, S. F. (2024). Data analytics-based auditing: a case study of fraud detection in the banking context. Annals of Operations Research, 340(2), 1161–1188.

Kang, M., & Lee, M.-J. (2017). Absorptive capacity, knowledge sharing, and innovative behaviour of R&D employees. Technology Analysis & Strategic Management, 29(2), 219–232.

Mushi, R. M. (2024). Assessing the factors influencing intention to use e-government in Tanzania: the perspective of trust, participation and transparency. Journal of Electronic Business & Digital Economics, 3(2), 156–169. https://doi.org/10.1108/JEBDE-08-2023-0017

Saud, I. M., Sofyani, H., Utami, T. P., Haq, M. M., & Fathmaningrum, E. S. (2025). Big data analytics-based auditing adoption in public sector: Indonesian evidence. Cogent Business and Management, 12(1). https://doi.org/10.1080/23311975.2025.2454320

Saunders, M., Thornhill, A., & Lewis, P. (2019). Research methods for business students (Eigth Edit). Pearson.

Sun, S., Cegielski, C. G., Jia, L., & Hall, D. J. (2018). Understanding the Factors Affecting the Organizational Adoption of Big Data. Journal of Computer Information Systems, 58(3), 193–203. https://doi.org/10.1080/08874417.2016.1222891

Tarhini, A., Hone, K., & Liu, X. (2015). A cross‐cultural examination of the impact of social, organisational and individual factors on educational technology acceptance between B ritish and L ebanese uni. British Journal of Educational Technology, 46(4), 739–755. https://doi.org/10.1111/bjet.12169

Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). The Processes of Technological Innovation. Lexington Books.

Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478.

Submitted

08/21/2025

Accepted

10/27/2025

Published

12/12/2025

How to Cite

Kwilasa, T., & Koloseni, D. N. (2025). Driving Innovation in Data Analytics Adoption for Auditing in Tanzania’s Banking Sector. International Research Journal of Business Studies, 18(3). https://doi.org/10.21632/

How to Cite

Kwilasa, T., & Koloseni, D. N. (2025). Driving Innovation in Data Analytics Adoption for Auditing in Tanzania’s Banking Sector. International Research Journal of Business Studies, 18(3). https://doi.org/10.21632/